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The present study focused on the role of number skills assessed in kindergarten with regard to their ability to
predict mathematical outcomes in grade 1. Number skills included those involving written symbols (symbolic
number identification and symbolic number comparison) and counting (procedural and conceptual). Their
contributions were contextualized against domain general (working memory, phonological awareness, and be-
havioral inattention) factors. Both types of kindergarten domain specific skills were strongly correlatedwith each
math outcome in first grade. However, hierarchical regression showed that written symbolic number skills
accounted for variance over and above counting predictors. In final models, domain general factors had unique
effects (verbal working memory for math fluency, phonological awareness for computation, verbal working
memory and phonological awareness for applied problems, and spatial working memory and phonological
awareness for story problems). Results highlight the interplay amongmath precursors andmath related domain
general factors and their differential roles for different mathematical outcomes.
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1. Introduction

Mathematics difficulties (MD) are an important concern in the
United States. Approximately 6 to 7% of the school age population has
a mathematical disability (Barbaresi, Katusic, Colligan, Weaver, &
Jacobsen, 2005; Geary, 1993). Therefore, identifying predictors of per-
formance in the early grades should be applicable toward efforts at
early identification, especially to the extent that math difficulties occur
on a continuum. In choosing potential predictors, the current study
was influenced by several dominant issues and notable frameworks.
The first is the relative contribution of domain general versus domain
specific variables in predicting math outcomes. Domain general
variables that have been associated with math skill include language
processes (Savage, Carless, & Ferraro, 2007), working memory (Fuchs
et al., 2006; see review by Raghubar, Barnes, & Hecht, 2010), and atten-
tion (Fuchs et al., 2010a). Domain specific skills are those broadly relat-
ed to number or numerosity. These include non-symbolic math
knowledge such as estimation of magnitude or magnitude comparison
(Landerl, Bevan, & Butterworth, 2004), symbolic knowledge such as
number identification and number comparison (LeFevre et al., 2010),
and counting skills and principles (Geary, 1993, 2011). Of these,
counting skills appear most proximal to arithmetic and therefore may
ologyDepartment, 4505 Cullen
bemore predictive of math outcomes than are other number predictors
or domain general skills. A second recurring issue in the mathematics
literature involves the role of procedural versus conceptual counting
(Geary, 2004; Praet, Titeca, Ceulemans, & Desoete, 2013). Studies that
have examined both domain specific and domain general predictors
(e.g., Fuchs, Geary, Compton, Fuchs, Hamlett, et al., 2010a, Fuchs et al.,
2010b) find support for both types of predictors and this pattern of pre-
dictorsmay also vary according to themathematical outcome examined
(see also Fuchs et al., 2008).

More clarification is needed regarding not only the relative con-
tributions between domain general and domain specific skills, but
also among several domain specific skills, particularly symbolic num-
ber skills (involving written numerals as in number identification
and symbolic comparison; or oral numbers, as in counting). Further
distinctions among domain general skill contributions are also need-
ed. Therefore, the goal of the present study is to evaluate the role of
symbolic number skills in the context of domain general variables.
We do this by assessing these predictor skills in kindergarten and
assessing these same students' mathematical skills in grade 1 when
these skills are being developed and of primary focus in education.
In addition to previous empirical literature, our selection of predic-
tors was informed by the theoretical frameworks of LeFevre et al.
(2010), who emphasized domain general precursors of spatial atten-
tion (akin to spatial working memory), linguistic skill, and domain
specific quantitative skills, as well as that of Geary (2004), who
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emphasized the particular role of working memory in supporting
math outcomes. Below we review the role of domain general skills
for mathematics, then differentiate among domain specific skills,
particularly focused on symbolic number skills, and then present
hypotheses.

1.1. Domain general factors for mathematical development and difficulty

As noted, language, working memory, and attention are important
potential domain general factors related to math. Among language-
basedmeasures, phonological awareness (PA) has received a significant
amount of attention (Krajewski & Schneider, 2009; Savage et al., 2007),
in part because phonological processes may impact computation per-
formance due to the need to create and maintain phonological repre-
sentations of stem and answer associations (Logie & Baddeley, 1987).
Additionally, De Smedt, Taylor, Archibald, and Ansari (2010) suggested
that quality of long-term phonological representations (that PA mea-
sures) is important in predicting mathematical outcomes. Further,
learning the Arabic numerals and linking them to the appropriate
labels is similar to developing lexical mappings when learning to read
(LeFevre et al., 2010). It is also possible that the memory representa-
tions required for mathematical computations are supported in part
by the same memory systems required for decoding and reading
(Geary, 1993), though the exact mechanism is not yet completely un-
derstood. Empirically, phonological awareness at ages 4 to 6 is related
to computation skills at age 7 (Bryant, MacLean, Bradley, & Crossland,
1990).More specifically, De Smedt et al. (2010) found that phonological
awareness is associated with math problems that rely on retrieval
rather than procedural strategies. Also, Savage et al. (2007) found that
phonological awareness at age 5 predicted math outcomes at age 11
even after controlling for early literacy skills (word reading, decoding,
and letter sound knowledge). Similarly, Hecht, Torgesen, Wagner, and
Rashotte (2001) found phonological processes to be related to growth
in math computation skills from 2nd to 5th grade while controlling
for previous math ability, vocabulary, and reading ability. In another
study in children with and without spina bifida, a neurodevelopmental
disorder associated with specific math difficulties, PA at 5 years of age
partially mediated the effect of group on computations and single digit
arithmetic fluency at 9 years (Barnes et al., 2014).

Other aspects of language have also been noted in the literature in
relation to math outcomes. For example, Koponen, Mononen, Rasanen,
and Ahonen (2006) found that rapid automatized naming was related
to addition, subtraction, and counting tasks in preschool children.
While such factors may be relevant to math, the role of phonological
awareness bothmechanistically and empirically is dominant, and there-
fore is the focus of language assessed in this study. The impact of phono-
logical awareness might be expected to be strongest for automatized
math facts and/or mathematical outcomes with a strong verbal compo-
nent (e.g., word problems).

Following the importance of working memory in relation to math
outcomes proposed by Geary (2004a), we review the differential rela-
tionships of the types of working memory. Each component of the
Baddeley and Hitch (Baddeley, 1986; Baddeley & Hitch, 1974) model
of working memory (central executive, phonological loop, and visuo-
spatial sketch pad) has been shown to relate to mathematical perfor-
mance (Zheng, Swanson, & Marcoulides, 2011), although differential
prediction has been noted (e.g., Keeler & Swanson, 2001; McLean &
Hitch, 1999; Rasmussen & Bisanz, 2005). For instance, both the phono-
logical loop and the central executive are related to mathematical prob-
lem solving ability (Rasmussen & Bisanz, 2005). The phonological loop
appears to be important for counting and holding information in com-
plex calculations (McLean&Hitch, 1999), and for holding problemasso-
ciations (Fuchs et al., 2006), given that its contents are sensitive to
decay. Geary et al. (2009) found a specific role for spatialworkingmem-
ory; using latent class analyses, students with strong computational
performance in grade 1 were also noted to have high spatial working
memory performance. Barnes et al. (2014) found that visual–spatial
working memory at 36 months of age partially or fully mediated the
effect of group (typical and atypical development of math) at 8
and 9 years of age on math calculations and math word problems,
respectively.

The complexity of the relationship of workingmemory to math was
noted not only in the review by Raghubar et al. (2010), but also in a re-
cent meta-analysis of this relationship in children between 4 and
13 years of age (Friso-van den Bos, van der Ven, Kroesbergen, & van
Luit, 2013). In that meta-analyses, one result compared processing
(recall/complex span) tasks to replacement (n-back) tasks and found
that spatial span was more important than spatial updating, but that
verbal updating was more important than verbal span, possibly due to
the referencing of a constant mental map visually, but using rehearsal
verbally. Children may also rely on different components of working
memory at different stages of development, with a shift in reliance
from visuospatial sketchpad to phonological loop with age (De Smedt
et al., 2009; Hitch, Halliday, Schaafstal, & Schraagen, 1988; McKenzie,
Bull, & Gray, 2003; Rasmussen & Bisanz, 2005). For example, poor
performance on measures of the visuospatial sketch pad has been
associated with deficits in early (preschool) non-verbal mathematics
achievement (Rasmussen & Bisanz, 2005), whereas Holmes and
Adams (2006) found that the central executive and the visuospatial
sketchpad were more predictive of math outcomes for children in 2nd
grade than for those in 4th grade. However, Bull, Espy, and Wiebe
(2008) found that both spatial and verbal working memory in pre-
school were predictive of math achievement in 1st and 3rd grades.
Thus, while the role of working memory to math is unquestioned, its
impactmay bemoderated by the characteristics of themeasure (partic-
ularly its verbal or spatial nature), the type of math outcome, and by
what other factors are considered in such prediction models. This cur-
rent study, then,will consider both verbal and spatial workingmemory.

A third important domain general factor for math skills is attention.
Attentional resources are necessary for children to initiate and direct
their processing of information, comprehend, and retrieve information
for different tasks (Geary, Hoard, & Hamson, 1999). A reduced ability
to maintain the focus of attention as rated by teachers (behavioral inat-
tention, Fuchs et al., 2005, 2006) is predictive of arithmetic skill (adding
and subtracting single digit numbers), algorithmic computation, arith-
metic word problems in first graders (Fuchs et al., 2006), and of estima-
tion skill in children in grade 3 (Seethaler & Fuchs, 2005). Raghubar et al.
(2009) found that higher levels of ratings of inattention in children in
third and fourth grade were related to higher multi-digit computation
and math fact errors. As well, children with mathematics difficulty are
rated as more inattentive than students without such difficulties
(Cirino, Fletcher, Ewing-Cobbs, Barnes, & Fuchs, 2007). Although
attention may be assessed from a cognitive or a behavioral perspective,
many prior studies focus on behavioral inattention. The current study
adopts this perspective as well.

1.2. Domain specific factors for mathematical development and difficulty

Number sense or numerosity may be as important to mathematics
learning as phonemic awareness is to reading development (Gersten
& Chard, 1999). Number sense includes non-verbal and implicit under-
standing of both absolute and relative magnitude of sets of non-
symbolic (i.e. objects or dots) or symbolic (i.e. Arabic numerals) items
(Geary et al., 2009). Models that focus on mathematical precursors uti-
lize awide array of factors related to quantity (Aunio et al., 2006; Jordan,
Kaplan, Nabors Olah, & Locuniak, 2006; LeFevre et al., 2010). For
example, LeFevre et al. (2010) found that non-symbolic estimation
was related to mathematical concepts and computations. Jordan,
Kaplan, Ramineni, and Locuniak (2009) found that number sense in
kindergarten predicted calculation fluency over and above age, reading,
vocabulary, working memory, and spatial reasoning, with number
combinations (e.g. How much is 2 and 1?) and number knowledge
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(e.g. Which is bigger, 4 or 5?) being uniquely predictive. Geary et al.
(2009) found that several number factors including number line esti-
mation and conceptual counting were predictive of mathematics learn-
ing disability.

Among the array of potential number-related factors, Cirino (2011)
identified five related latent variables, which included symbolic number
comparison, non-symbolic comparison, symbolic labeling, rote counting,
and counting concepts. A major distinction can bemade between those
number variables that utilize written Arabic numerals and therefore re-
quire extracting meaning from an alphanumeric symbol, versus those
that rely on counting. In Cirino (2011), all factors, with the exception
of non-symbolic comparison, were strongly related to small sums addi-
tion. Linguistic ability (phonological awareness and rapid automatized
naming) and spatial working memory were also predictive of small
sums addition, but their effect was mediated by measures of symbolic
quantity, including counting. Non-symbolic factors are emphasized in
many conceptualizations of number sense (e.g., Butterworth, 2005)
and have been shown to relate to mathematical competence (Desoete,
Ceulemans, De Weerdt, & Pieters, 2010; Mazzocco, Feigenson, &
Halberda, 2011). However, it has also been suggested that symbolic fac-
tors are more predictive of mathematics (Holloway & Ansari, 2009).
Further, children with MD appear to be more impaired on symbolic
tasks than non-symbolic tasks (De Smedt & Gilmore, 2011). Therefore,
the present study focuses specifically on symbolic predictors.

Counting per se is particularly important for later mathematics
(Carrasumada, Vendrell, Ribera, & Montserrat, 2006), in part due to its
explicit role in the transition to formal arithmetic in which counting is
used in early calculation (Geary, 2004). Counting also allows for the au-
tomatic use ofmath-related informationwhichwould permit other cog-
nitive resources to be devoted to more complex tasks, such as problem
solving (Gersten & Chard, 1999; Resnick, 1989). Counting can be further
partitioned into separate but related components that are procedural
versus conceptual. Poor arithmetic skills in childrenwithMD are related
to an immature understanding of the counting principles and increased
procedural counting errors (Geary, 2004). Empirically, both conceptual
and procedural counting are strongly related to mathematics (Geary,
1993; Stock, Desoete, & Roeyers, 2009), but few studies compare the
impact of different types of counting, or evaluate their impact against
other domain specific and domain general predictors.

We follow Koponen, Aunola, Ahonen, and Nurmi (2007) in defining
procedural counting as the ability to correctly sequence numbers orally;
in the present study, this is done without reference to external visual
stimuli. Geary (2004a) suggests that procedural counting is supported
by language systems, though it is associated with MD regardless of IQ
or reading difficulties (Geary, Hoard, Byrd-Craven, Nugent, & Numtee,
2007). Aunola, Leskinen, Lerkkanen, and Nurmi (2004) examined
growth trajectories of mathematical competence (on a composite in-
cluding basic arithmetic, knowledge of numbers, and word problems)
in preschool to grade 2 and found that oral counting ability predicted
both initial performance aswell as growth; other studies also document
the predictive role of procedural counting (Geary et al., 1999; Koponen,
Salmi, Eklund, & Aro, 2012; Koponen et al., 2007).

In contrast to procedural counting, conceptual counting refers to the
child's understanding of countingprocedures; that is, knowledge of prin-
ciples that govern how and why counting works. Gelman and Gallistel
(1978) described three essential (one-to-one correspondence, stable
order, and cardinality) and two non-essential (abstraction and order
irrelevance) counting principles based on whether or not mastery of
the principle is required for correct counting (Briars & Siegler, 1984;
Kamawar et al., 2010; Laupa & Becker, 2004). Specific components of
conceptual counting are related to mathematical outcomes at young
ages (LeFevre et al., 2006; Stock et al., 2009). For example, Stock et al.
(2009) found that the essential counting principles (stable order, one-
to-one, and cardinality) in kindergarten predicted grade 1 arithmetic
(14% variance) and math facts (5% variance). Praet et al. (2013) follow-
ed 63 children from kindergarten to grade 1, and found procedural
counting to bemore predictive than conceptual counting of a composite
grade 1 math outcome, within the context of language variables and a
square estimation/counting task. Neither procedural nor conceptual
counting were unique predictors when generalized language, logical
thinking, the square task, and a non-symbolic comparison task were
also included. The present study is similar in utilizing both procedural
and conceptual counting variables in children from kindergarten to
grade 1, but is broader in scope in that it also considers working mem-
ory and attention, and other symbolic number predictors, and examines
more specific outcomes.

1.3. Present study

The primary goal of this study was to evaluate the relative role of
kindergarten number skills, with a particular emphasis on counting, as
precursors to three types ofmathematics achievement in grade 1:fluen-
cy, computation, and math problem solving, in the context of domain
general predictors. We expected that both procedural and conceptual
counting, as well as symbolic number variables, and domain general
predictors (verbal and spatial workingmemory, behavioral inattention,
and phonological awareness) would each be related to all of the out-
comes. We also expected domain specific variables (counting and sym-
bolic number) to be predictive even with domain general predictors
included in the models. Our particular research questions focused on
the specificity of the domain specific variables. That is, (1) Are counting
skills, which are perhapsmost proximal to the developmental sequence
of early addition, more important longitudinal predictors than symbolic
number predictors? There is little research that examines the relative
roles of these predictors in the context of one another for various out-
comes. (2) We were also interested in what type of counting skills is
more relevant for which mathematical outcome, which we examined
in the context of the above models. Again, there is little prior research,
however, we followed Koponen et al. (2007) in expecting that concep-
tual counting will be more relevant for math problem solving relative
to math fluency and computation, and in contrast that procedural
counting will be most relevant for math fluency and computation.

2. Method

2.1. Participants

The 193 participants were from a larger study of math skills in 286
kindergarten students (referred to below as parent sample; Cirino,
2011). Students (48.70% female) from a single large urban district
were evaluated in kindergarten (mean age = 6.16, SD = 0.32) and
then again in grade 1 (mean age = 7.16, SD = 0.32). Only children
who had data at both time points (and therefore were assessed on
math outcomes) were included in this study. Students were from
eight schools and 37 classrooms where English was the language of in-
struction. Participant characteristics comparing those available for the
present study versus those who were not, are summarized in Table 1.
Students who were unavailable did not significantly differ from those
who remained in terms of age in kindergarten, socioeconomic status,
sex, ESL status, or small sum addition scores (all p N .05); however,
groups did differ on ethnicity. When standardized residuals were
tested to examine differences by specific ethnicity (Field & Miles,
2010), the only difference that approached significance was the Cau-
casian group, such that there was less than expected in the group
that discontinued. However, the relative distribution of ethnicity
remained the same in those who remained and those who did not
(African American N Caucasian N Asian N other ethnicity).

2.2. Procedures

Students were assessed in two 30-minute sessions in their schools
mostly on consecutive days by trained examiners. Students were first



Table 1
Demographic characteristics comparing included and dropped samples.

Variable Category/scale Included (n = 193) Dropped (n = 93)

Age in kinder Years mean (SD) 6.16 (0.32) 6.07 (0.34)
Gender Female (%) 48.70% 48.39%
Ethnicity⁎ African American 43.52% 63.44%

Caucasian 23.83% 10.75%
Hispanic 25.39% 19.35%
Asian 7.25% 6.45%

Language English second language (%) 12.44% 5.38%
SES Free/reduced lunch (%) 58.03% 66.67%
K-BIT Verbal Standard score 97.61 (13.86) –

Small Sums Addition Total score 4.73 (13.77) 2.93 (14.79)

Note. SES = Socioeconomic status measured by receiving a free or reduced lunch; K-BIT Verbal = verbal IQ index from Kaufman Brief Intelligence Test given in grade 1; Small Sums
Addition in kindergarten.
⁎ p b .01 overall.
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assessed in spring of their kindergarten year and again in spring of first
grade. More specific details for the kindergarten measures, and
regarding the initial time point, may be found in Cirino (2011).

2.3. Kindergarten predictors

2.3.1. Counting
Procedural counting was assessed with Oral Counting and Counting

Down (see Cirino, 2011). Oral Counting was adapted from AIMsweb
(Clarke & Shinn, 2004); test–retest reliabilities range from .78 to .80.
Students count aloud from “1” for 1 minute. The number of correctly
identified digitsminus the number of errors was recorded, and convert-
ed to a numbers-per-second metric. Counting Down requires children
to count down from 10, and then from 20, as quickly but as accurately
as possible. Dependent measures are the times taken to say all of the
numbers for each subsection, converted to a numbers-per-secondmet-
ric. Themedian intercorrelation of these three counting speedmeasures
in the parent sample was r = .59. The number-per-second counting
scoreswere then z-scored against the sample and averaged into a single
procedural counting composite.

Conceptual Counting was assessed with Count Out Objects and Pup-
pet Counting. For the 5 items of the Count Out Objects measure, children
see pictures of boxes and cars (5 boxes and 4 cars; 6 boxes and 7 cars; 8
boxes and 7 cars; 7 boxes and 7 cars; and 4 boxes and 4 cars) randomly
displayed on a page, and are instructed to “Count out loud, ALL of the
things on this page.” Immediately thereafter, the child was asked,
“How many are there altogether?” Four counting errors were noted
(Gelman & Gallistel, 1978): abstraction (only one type of object (e.g.,
cars) was counted), one-to-one correspondence (double counting an
item), stable order (disruption of the counting order), and cardinality
(mismatch between the final number counted and the response to the
“how many” question). Some errors were of low frequency, and so a
sum of error score was the dependent measure. Internal consistency
from the parent sample was α = 0.68. Puppet Counting followed the
procedure of Geary, Brown, and Samaranayake (1991), Geary, Hoard,
Byrd-Craven, and DeSoto (2004b), and Geary et al. (1999). The puppet
counts an array of alternating red and green dots (a) correctly in typical
left-to-right fashion (3 trials); (b) correctly though by counting all the
red dots and then all the green dots (pseudoerrors, 4 trials); or (c) incor-
rectly by double counting the first dot (3 trials). Double count error tri-
als, which assess the one to one counting principle, were included in the
analyses. Parent sample internal consistency for the error count trials
was α = 0.80. A composite conceptual counting knowledge variable
was used.

2.3.2. Symbolic number
Symbolic Number Identification asks children to identify 15 numbers

(4, 8, 3, 7, 6, 84, 17, 25, 33, 12, 79, 100, 150, 264, 333). Number correct
was used in this study. Parent sample internal consistency was α =
.86. A measure of symbolic number comparison (Quantity
Discrimination) was adapted from AIMSweb (Clarke & Shinn, 2004)
and consists of 28 pairs of Arabic numbers; in this version, children
are asked to circle the greater number of the pair. Alternate form and
test–retest reliability were good with a range from .85 to .93 (Clarke &
Shinn, 2004; Lembke & Foegen, 2009). Both correct response and errors
are recorded. The total number correct was used in this study.

Spatial Working Memory (Cirino, 2011) consists of a series of un-
nameable shapes, or a star, presented one at a time in one of four quad-
rants of a page. The child is asked to identify whether the shape is a star
for each stimulus shown, and then to recall the position of all the shapes
in a series, in sequential order. There were two practice trials and three
trials with systematically increasing series lengths (blocks) of 2, 3, 4,
and 5. The measure was discontinued if students incorrectly recalled
the order of all three serieswithin a block. In the parent sample, internal
consistency across individual trials wasα= 0.73. A total raw score was
used where a point was awarded for each correct sequence recalled
(maximum = 12).

Digits Backward from the Test of Memory and Learning 2nd edition
(TOMAL-2; Reynolds & Bigler, 2007) was included as a measure of pho-
nological or verbal working memory. Students were read a string of
numbers and asked to repeat them in reverse order back to the examin-
er. Test–retest reliability for this age group was .61 (Reynolds & Bigler,
2007) and internal consistency was α = 0.83. Total number correct
was used.

Phonological Awareness was assessed using the Phoneme Elision
subtest from the Comprehensive Test of Phonological Processing (CTOPP;
Wagner, Torgesen, & Rashotte, 1999). The Phoneme Elision task involves
hearing a whole word, and then being asked to remove a sound from
the beginning, middle, or end of the word, and state the result, which
is always a new word. Reliability in this age range is r = .82 and the
parent sample internal consistency was α = 0.88. The scaled score of
the subtest was used.

2.3.3. Behavioral inattention
The Strengths andWeaknesses of ADHD and Normal Behavior (SWAN-

IV; Swanson et al., 2005) is an 18-item teacher rating scale of inattention
and hyperactivity/impulsivity rated on a 7-point Likert scale that ranges
from −3 to +3. Each behavior corresponds to specific ADHD criteria
identified in the Diagnostic and Statistical Manual of Mental Disorders —
Fourth Edition, Text Revision (American Psychiatric Association, 2004)
which factors into two scales, inattention and hyperactivity/impulsivity.
The inattention scale was used in this study.

2.4. Grade 1 outcome measures

2.4.1. Fluency
A combined score across Small Sums Addition and Subtraction was

used. Problems were arranged in vertical format with six rows of six
problems per sheet, over two sheets. The 72 Addition items included
55 single-digit problems that sum to 9 or less, followed by 17 single
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digit items that sum to 18 or less (in general these later items were not
attempted). The 72 Subtraction items included 53withminuends 1 to 9
(with all answers positive or zero), followed by 19 itemswithminuends
of 10 or 11 (and which were in general not attempted). Students were
asked to complete asmany problems as they could in 2 minutes. A com-
posite sum of the number correct minus the number incorrect on the
addition and subtraction tests was used. The correlation for the
addition and subtraction variables was r = .80, p b .0001.

2.4.2. Computation
Woodcock–Johnson — Third Edition (WJ-III) Calculation and Wide

Range of Achievement Test — Third Edition (WRAT-3) Arithmetic. The
WJ-III calculation subtest consists of addition and subtraction of single
and multi digit problems for this age range. Test–retest reliability in
this age range for this task is 0.96 (McGrew, Schrank, & Woodcock,
2007). TheWRAT-3 arithmetic subtest involves symbolic number iden-
tification, counting, and number comparisons for very young children;
at school age, the task requires computations that increase in difficulty.
Test–retest reliability in this age range for this task is 0.87 (Wilkinson,
1993). The computation variable was created using a composite of the
standard scores from the WJ Calculation subtest and the WRAT-3
Arithmetic subtest. The correlation of the WRAT-3 Arithmetic subtest
with the WJ-III Calculation subtest was r = .82, p b .0001.

2.4.3. The Woodcock–Johnson— III Tests of Academic Achievement (WJ-III;
Woodcock, McGrew, & Mather, 2001)

Applied Problems subtest is a much more broad measure, and
consists of math word problems that are presented to the subject and
read out loud by the examiner. The items range in difficulty and the
use of pencil and paper is allowed. Test–retest reliability in this age
range for this task is 0.88 (McGrew et al., 2007). The standard score of
the total correct items was used.

Math Problem Solving: Single Digit Story Problemswas first developed
byRiley, Greeno, andHeller (1983) andhas since been adapted (Hanich,
Jordan, Kaplan, & Dick, 2001; Jordan & Hanich, 2003; Riley & Greeno,
1988). The measure includes 14 items of addition and subtraction
read out loud by the examiner that includes three categories of prob-
lems: change, combine, and compare. The sample internal consistency
was α = 0.85. A total raw score was used where a point was awarded
for each correct sequence recalled (maximum = 14).

3. Analyses and preliminary data examination

The primary analytic approach was regression-based, including cor-
relations, multiple regression, and hierarchical regression. The assump-
tions of regressionwere examined, includingmulticolinearity, andwere
not violated. After examination of zero-order correlations, models that
tested hypotheses were each built in a similar fashion. The first model
included the appropriate demographic variables and the domain gener-
al factors. The next two hierarchical models were run in two parallel
steps to evaluate the relative contributions of the counting versus
symbolic number factors. In one model, the counting variables were
added first (Model 2a), followed By the symbolic number variables
(Model 2b),whereas in the othermodel, the symbolic number variables
(Model 3a) were added first, followed by the counting variables
(Model 3b). Model comparisons were used to test the amount of vari-
ance attributable to each step over and above the other. The R2 change
for the models was evaluated by calculating an observed F value based
on the sum of squares of the error term for the models and comparing
it to a critical F value with the degrees of freedom associated with the
full model (Maxwell & Delaney, 2003). Assumptions for all analyses
(e.g., for regression this included independence, homoscedasticity, and
normality of residuals) were evaluated and addressed where
appropriate.

Several covariates were considered. Because lower socioeconomic
status is a risk factor for learning difficulties (Duncan et al., 2007), free
lunch status was evaluated. Sex differences were considered though
not expected as these do not become apparent until later in academic
development (Rosselli, Ardila, Matute, & Inozemtseva, 2009). Age, eth-
nicity, and English as Second Language (ESL) status were also consid-
ered. Free lunch status and ethnicity were related to each outcome;
age was related to the computation and story problems models, and
both sex and ESL status were unrelated to each outcome. Covariates
that related to specific outcomes were considered; where multiple
covariateswere considered, amodel was runwithout additional predic-
tors to determine the most parsimonious set of covariates, which were
trimmed where not relevant in final models.

4. Results

First, descriptive/distributional characteristics for the predictor and
outcome variables are reported in Table 2. Correlations among predic-
tors and outcomes are reported in Table 3, and document the strong re-
lationship of each of the predictors to the outcomes of interest. These
ranged from .23 to .60, with an overall median of .47 (median counting
r = .44; median number r = .56; median domain general r = .47). In
general, relations of these predictors were weakest for computation
relative to other mathematical outcomes.

4.1. Predictions of fluency, computation, applied problems and story
problems

The relative predictive power of the demographic, domain specific,
and domain general variables for three types of outcomes (Fluency,
Computation, and Math Problem Solving) was examined through hier-
archical regressions. Themodels were built similarly for each of the four
specific outcomes (Fluency, Computation, Applied Problems, and Story
Problems). First we considered the most parsimonious set of covari-
ates/demographic variables. Then, Model 1 included these relevant de-
mographic variables and domain general variables. Model 2a added the
procedural and conceptual counting variables and Model 2b added the
symbolic number variables. Models 3a and 3b switch the order of the
domain specific variables (i.e. adding symbolic number variables before
the counting variables) to assess the difference in the R2 change for
these steps. Though the predictors are significantly correlated, none
were extreme, and tolerance was adequate for the regression models.
The results of the regression models are summarized in Tables 5 to 8,
and those of the final models are pictorially represented in Fig. 1.

For Fluency (Table 4), the relevant demographics included free
lunch status and ethnicity, though only ethnicity was a unique predic-
tor. Model 1 included ethnicity and domain general predictors (verbal
working memory, spatial working memory, behavioral inattention,
and phonological awareness). However, ethnicity was not significant,
and after trimming, the remaining model accounted for 35.7% of the
variance, F (4,174) = 24.19; p b .001; each of the cognitive predictors
added unique predictive value (all p b .03). Model 2a added the
counting predictors, and the full model showed R2 = .394, R2

change = .036, p b .001. In this model, conceptual counting, but not
procedural counting, was a unique predictor, alongwithmost cognitive
variables, except for spatial workingmemory.Model 2b added symbolic
number variables (symbolic number identification and symbolic num-
ber comparison), and the full model showed R2 = .495, R2 change =
.101, p b .001. In this model, the only significant predictors were the
symbolic number variables (both p b .001), and verbal workingmemo-
ry, p b .041. Model 3a results were highly similar to those of Model 2b,
and in Model 3b, the counting variables did not add unique variance,
F (1,170) ≤ 1; R2 change = .010.

For Computation (Table 5), the relevant demographics included free
lunch status, ethnicity, and age, though only ethnicity and age were
unique predictors. Model 1 included these demographic variables and
the domain general variables. Ethnicity was no longer significant and
after trimming the remaining model was significant, F (5,174) =



Table 2
Descriptive statistics for predictor and outcome variables.

Variable Range N Mean Std Dev Kurtosis Skewness

Procedural counting −1.46–2.70 191 0.06 0.81 0.52 0.58
Conceptual counting −2.38–0.88 193 0.07 0.75 0.25 −0.92
Domain specific symbolic number −3.13–1.24 193 0.82 0.94 0.01 −0.74
Identification symbolic number comparison −2.29–2.10 192 0.04 0.98 −0.60 −048
Domain general
Verbal working memory 3–19 189 9.98 3.47 −0.26 −0.21
Spatial working memory 0–10 192 2.96 2.32 0.33 0.86
Phonological awareness 4–19 185 10.04 2.95 −0.01 −0.05
Behavioral inattention −27–27 192 6.65 11.84 −0.49 −0.12

Grade 1 outcomes
Fluency −3.28–2.56 192 −0.0001 0.95 −0.82 −0.32
Computation 3.08–2.06 193 −0.0052 0.96 0.42 −0.73
Applied problems 69–151 193 109.73 13.73 0.13 −0.25
Story problems 0–14 189 6.86 4.481 −1.36 0.06

Note. N = number of participants; Std Dev = standard deviation; Procedural counting = z-mean of oral counting, counting down from 10 and counting down from 20; Conceptual
counting = z-meanof counting errors andpuppet counting errors; Digits Backward = scaled score from the Test ofMemory and Learning-2; Phonological awareness = Phoneme Elision
scaled score from the Comprehensive Test of Phonological Processing; Behavioral Inattention = inattention scale from the strengths and weaknesses of ADHD and normal behavior;
Fluency = mean of Small Sums Addition and Small Sums Subtraction; Computation = mean of standard scores ofWoodcock Johnson III Calculations subtest andWide Range of Achieve-
ment Test Arithmetic subtest; Applied Problems = standard score from the Woodcock Johnson III subtest.
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29.56; p b .0001, R2 = .46, with each of the cognitive predictors adding
unique predictive value (all p b .05). Model 2a added the counting pre-
dictors, and the full model showed R2= .50, R2 change= .036, p b .002.
In this model, conceptual counting (p b .002), but not procedural
counting, was a unique predictor, along with behavioral inattention
(p b .05) and phonological awareness (p b .001). Model 2b added
symbolic number variables, and the full model showed R2 = .60, R2

change = .099, p b .0001. In this model, the only significant predictors
were the symbolic number variables (both p b .0001), and phonological
awareness, p b .037. As in the Fluency models, the results of Model 3a
and Model 2b were very similar except that phonological awareness
was no longer significant. The counting variables did not add unique
variance in Model 3b, F (2,170) = 2.14; R2 change = .010.

For Applied Problems (Table 6), the relevant demographics included
free lunch status and ethnicity, though only ethnicity was a unique pre-
dictor. Model 1 included ethnicity and the domain general variables. Eth-
nicitywas no longer significant, and after trimming, the remainingmodel
was significant, F (4,175) = 36.76; p b .0001, R2 = .46, with each of the
cognitive predictors adding unique predictive value (all p b .03). Model
2a added the counting predictors, and the full model showed R2 = .50,
R2 change= .040, p b .001. In thismodel, both conceptual and procedur-
al counting were unique predictors (p b .02), along with verbal working
memory (p b .02) and phonological awareness (p b .0001). Model 2b
added symbolic number variables, and the full model showed R2 =
.530, R2 change = .034, p b .003. In this model, the symbolic number
Table 3
Correlations between kindergarten predictors and grade 1 math outcomes.

Counting Number Cognitive

1 2 3 4 5 6 7 8

1. Procedural counting
2. Conceptual counting 0.40
3. Symbolic number
identification

0.63 0.36

4. Symbolic number comparison 0.53 0.47 0.50
5. Verbal working memory 0.36 0.32 0.40 0.42 0.33
6. Spatial working memory 0.37 0.39 0.38 0.34
7. Phonological awareness 0.48 0.31 0.48 0.43 0.38 0.33
8. Behavioral inattention 0.43 0.37 0.55 0.52 0.36 0.33 0.42

Outcomes
Fluency 0.42 0.44 0.60 0.55 0.46 0.36 0.46 0.47
Computation 0.33 0.37 0.52 0.45 0.38 0.27 0.47 0.35
Applied problems 0.53 0.45 0.58 0.54 0.52 0.39 0.59 0.45
Story problems 0.48 0.44 0.57 0.58 0.50 0.46 0.59 0.48

Note. All correlations are significant at p b .0001. Abbreviations are as in Table 2.
variables were significant predictors (both p b .05), with the same do-
main general variables remaining uniquely predictive (phonological
awareness, p b .0001; verbal workingmemory, p b .02). Model 3a results
were highly similar to those of Model 2b with spatial working memory
also being significant (p b .05), and in Model 3b, the counting variables
did not add unique variance, F (2,171) = 1.80; R2 change = .010.

For the Story Problems outcome (Table 7), the relevant demo-
graphics included free lunch status, ethnicity, and age, though only eth-
nicity was a unique predictor. Model 1 therefore included ethnicity and
the domain general variables, and all variables were retained, and
the model was significant, F (7,170) = 29.69; p b .0001, R2 = .55,
with each of the cognitive predictors adding unique predictive value
(all p b .02). Model 2a added the counting predictors, and the full
model showed R2 = .567, R2 change = .017, p N .05. In this model,
neither conceptual nor procedural counting were unique predictors,
but each of the domain general variables were (all p b .03). Model 2b
added symbolic number variables, and the full model showed R2 =
.609, R2 change = .042, p b .0001. In this model, the significant predic-
torswere the symbolic number variables (both p b .03), spatial working
memory (p b .02) and phonological awareness (p b .001). Model 3a and
Model 2b were highly similar. In Model 3b, the counting variables did
not add unique variance, F (2,167) = 1.15; R2 change = .005.

5. Discussion

The goal of the present study was to evaluate the role of key domain
specific factors in the context of domain general variables, for mathe-
matical competencies. In doing so, we specifically considered the role
of symbolic number predictors and both procedural and conceptual
counting. Although prior studies have examined the issue of domain
specific versus domain general contributions to mathematics, this
study was unique in the careful selection of domain general outcomes,
the comprehensiveness of the domain specific predictors examined,
the variety of mathematical outcomes considered, and its doing so in a
fairly large sample, and in a longitudinal fashion. The present study
contributes to the literature in helping to clarify not only the dominant
type of predictors important for each outcome, but also the specific
variety of each.

In general, domain specific measures of both counting (median r =
.44) and symbolic number (median r= .56), as well as domain general
measures (median r = .47), were robustly predictive of each outcome.
The only uniquely predictive demographic variables were age (for Com-
putation) and ethnicity (for Story Problems). Within the context of the
domain general variables, review of the domain specific variables
showed that conceptual counting was significantly predictive for
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Fig.1. Domain general, domain specific, and demographic factors influencing fluency, computation, applied problems, and story problems outcomes. Note. Thickness of the arrows repre-
sent highest to lowest p value.WM= working memory, PA= phonological awareness, Procedural = procedural counting, Conceptual = conceptual counting, SNI = symbolic number
identification, SNC = symbolic number.

Table 4
Hierarchical regression statistics for fluency outcome model.

B SE t β p

Model 1
Behavioral inattention 0.0206 0.0055 3.73 0.2555 0.0003
Spatial working memory 0.0597 0.0266 2.25 0.1482 0.0259
Verbal working memory 0.0549 0.0202 2.72 0.1957 0.0072
Phonological awareness 0.0713 0.0228 3.13 0.2238 0.0021

Model 2a
Behavioral inattention 0.0162 0.0056 2.90 0.2011 0.0042
Spatial working memory 0.0317 0.0274 1.16 0.0788 0.2496
Verbal working memory 0.0485 0.0199 2.43 0.1725 0.0160
Phonological awareness 0.0602 0.0234 2.57 0.1889 0.0109
Procedural counting 0.0621 0.0871 0.71 0.0531 0.4772
Conceptual counting 0.2595 0.0898 2.89 0.2034 0.0044

Model 2b
Behavioral inattention 0.0027 0.0056 0.49 0.0340 0.6272
Spatial working memory 0.0265 0.0253 1.05 0.0658 0.2969
Verbal working memory 0.0379 0.0184 2.06 0.1350 0.0407
Phonological awareness 0.0270 0.0222 1.21 0.0846 0.2264
Procedural counting −0.1013 0.0858 −1.18 −0.0867 0.2393
Conceptual counting 0.1289 0.0866 1.49 0.1010 0.1387
Symbolic number identification 0.1105 0.0255 4.33 0.3352 b .0001
Symbolic number comparison 0.0232 0.0060 3.86 0.2749 0.0002

Model 3a
Behavioral inattention 0.0031 0.0056 0.55 0.0384 0.5839
Spatial working memory 0.0323 0.0243 1.33 0.0802 0.1865
Verbal working memory 0.0374 0.0184 2.03 0.1332 0.0436
Phonological awareness 0.0216 0.0219 0.99 0.0682 0.3231
Symbolic number identification 0.1046 0.0238 4.39 0.3173 b .0001
Symbolic number comparison 0.0250 0.0057 4.38 0.2958 b .0001

Model 3b (see Model 2b)

Model/model comparison R2/R2 Δ F p

R2 Model 1 0.3573 24.19 b .0001
R2 Δ Model 2a–1 0.0362 5.78 b .001
R2 Δ Model 2b–2a 0.1009 10.78 b .001
R2 Δ Model 3b–3a 0.0095 b1 ns
R2 Full Model (2b/3b) 0.4944 20.78 b .0001

Note. B = parameter estimate; SE = standard error; t = t value; β = standardized
estimate; p = p value. Abbreviations are as in Table 2. Model 3b will have the same
parameter estimates as Model 2b and therefore is not listed.

18 R.B. Martin et al. / Learning and Individual Differences 34 (2014) 12–23
all outcomes except story problems and procedural counting was addi-
tionally predictive of applied problems. However, when the symbolic
number variables were added, these were consistently uniquely predic-
tive, and the contributions of the counting variables became no longer
significant. Though differential contribution of domain general variables
to the outcomeswas not specifically hypothesized, there was variability
observed. Specifically, phonological awareness and working memory
were more consistently predictive relative to behavioral inattention;
within working memory, verbal working memory was consistently
stronger than visual working memory. These conclusions are further
contextualized below.

5.1. Domain general

Among domain general skills, in final models, verbal workingmem-
ory was predictive of math fluency; phonological awareness was pre-
dictive of computations; verbal working memory and phonological
awareness were predictive of applied problem solving; and spatial
working memory and phonological awareness were predictive of
story problems. These results are consistent with the literature suggest-
ing a role for each of these skills (Barnes et al., 2014; Friso-van den Bos
et al., 2013; Krajewski & Schneider, 2009; McLean & Hitch, 1999;
Raghubar et al., 2010; Rasmussen & Bisanz, 2005; Savage et al., 2007;
Swanson & Jerman, 2006) factors in mathematics. Cirino (2011) found
that the effects of both working memory and phonological awareness
were completely mediated by number factors (which included all of
the domain specific and counting measures evaluated here). However,
that study assessed only one math outcome, small sums addition, con-
currently in kindergarten, rather than assessing a variety of outcomes
longitudinally.

Friso-van den Bos et al. (2013) noted thatworkingmemory correlat-
ed more strongly with general rather than specific math measures,
which they related in part to the stronger measurement properties of
such general measures. In the present study, working memory had the
weakest relationship to the computation outcome, although thesemea-
sures exhibited strong psychometric properties. The weaker observed
relationships of working memory with this measure may be related to
the availability of a written work space, and the relatively low number



Table 5
Hierarchical regression statistics for computation outcome model.

B SE t β p

Model 1
Age −1.3367 0.1664 −8.03 −0.4597 b .0001
Behavioral inattention 0.0139 0.0050 2.80 0.1778 0.0057
Spatial working memory 0.0599 0.0239 2.50 0.1537 0.0132
Verbal working memory 0.0347 0.0179 1.94 0.1283 0.0544
Phonological awareness 0.0886 0.0205 4.33 0.2848 b .0001

Model 2a
Age −1.4123 0.1637 −8.63 −0.4857 b .0001
Behavioral inattention 0.0099 0.0050 1.98 0.1260 0.0494
Spatial working memory 0.0336 0.0244 1.37 0.0861 0.1711
Verbal working memory 0.0286 0.0175 1.63 0.1057 0.1048
Phonological awareness 0.0771 0.0209 3.68 0.2479 0.0003
Procedural counting 0.0513 0.0781 0.66 0.0451 0.5120
Conceptual counting 0.2657 0.0801 3.32 0.2140 0.0011

Model 2b
Age −1.5523 0.1495 −10.39 −0.5338 b .0001
Behavioral inattention −0.0028 0.0049 −0.57 −0.0358 0.5685
Spatial working memory 0.0319 0.0221 1.44 0.0818 0.1508
Verbal working memory 0.0190 0.0159 1.20 0.0703 0.2333
Phonological awareness 0.0413 0.0197 2.10 0.1328 0.0372
Procedural counting −0.0925 0.0751 −1.23 −0.0812 0.2199
Conceptual counting 0.1372 0.0757 1.81 0.1105 0.0716
Symbolic number identification 0.0987 0.0223 4.44 0.3068 b .0001
Symbolic number comparison 0.0248 0.0053 4.68 0.3019 b .0001

Model 3a
Age −1.5576 0.1498 −10.40 −0.5356 b .0001
Behavioral inattention −0.0024 0.0049 −0.49 −0.0309 0.6243
Spatial working memory 0.0387 0.0214 1.82 0.0995 0.0712
Verbal working memory 0.0186 0.0159 1.17 0.0689 0.2440
Phonological awareness 0.0364 0.0195 1.87 0.1168 0.0636
Symbolic number identification 0.0942 0.0209 4.51 0.2927 b .0001
Symbolic number comparison 0.0269 0.0051 5.30 0.3271 b .0001

Model 3b (see Model 2b)

Model/model comparison R2/R2 Δ F p

R2 Model 1 0.4593 29.56 b .0001
R2 Δ Model 2a–1 0.0356 6.42 0.0026
R2 Δ Model 2b–2a 0.0986 20.77 b .0001
R2 Δ Model 3b–3a 0.0102 2.14 ns
R2 Full Model (2b/3b) 0.5957 27.84 b .0001

Note. B = parameter estimate; SE = standard error; t = t value; β = standardized
estimate; p = p value. Abbreviations are as in Table 2. Model 3b will have the same
parameter estimates as Model 2b and therefore is not listed.

Table 6
Hierarchical regression statistics for applied problems outcome model.

B SE t β p

Model 1
Behavioral inattention 0.1580 0.0712 2.22 0.1398 0.0277
Spatial working memory 0.8894 0.3417 2.60 0.1582 0.0100
Verbal working memory 0.7733 0.2581 3.00 0.1984 0.0031
Phonological awareness 1.8118 0.2927 6.19 0.4036 b .0001

Model 2a
Behavioral inattention 0.0872 0.0715 1.22 0.0772 0.2244
Spatial working memory 0.4744 0.3501 1.35 0.0844 0.1772
Verbal working memory 0.6550 0.2520 2.60 0.1680 0.0102
Phonological awareness 1.5408 0.2972 5.18 0.3433 b .0001
Procedural counting 2.5389 1.1146 2.28 0.1546 0.0240
Conceptual counting 2.7002 1.1492 2.35 0.1508 0.0199

Model 2b
Behavioral inattention −0.0183 0.0761 −0.24 −0.0162 0.8102
Spatial working memory 0.4620 0.3415 1.35 0.0822 0.1779
Verbal working memory 0.5698 0.2472 2.31 0.1462 0.0218
Phonological awareness 1.2774 0.2994 4.27 0.2846 b .0001
Procedural counting 1.4071 1.1605 1.21 0.0857 0.2270
Conceptual counting 1.5010 1.1730 1.94 0.0843 0.1999
Symbolic number identification 0.6692 0.3447 1.94 0.1442 0.0538
Symbolic number comparison 0.2350 0.0815 2.88 0.1981 0.0044

Model 3a
Behavioral inattention −0.0128 0.0764 −0.17 −0.0114 0.8668
Spatial working memory 0.6405 0.3285 1.95 0.1139 0.0528
Verbal working memory 0.6032 0.2466 2.45 0.1547 0.0154
Phonological awareness 1.3297 0.2963 4.49 0.2962 b .0001
Symbolic number identification 0.8779 0.3222 2.72 0.1891 0.0071
Symbolic number comparison 0.2823 0.0773 3.65 0.2379 0.0003

Model 3b (see Model 2b)

Model/model comparison R2/R2 Δ F p

R2 Model 1 0.4566 36.76 b .0001
R2 Δ Model 2a–1 0.0399 6.85 0.0014
R2 Δ Model 2b–2a 0.0335 6.09 0.0028
R2 Δ Model 3b–3a 0.0099 1.80 ns
R2 Full Model (2b/3b) 0.5300 24.10 b .0001

Note. B = parameter estimate; SE = standard error; t = t value; β = standardized
estimate; p = p value. Abbreviations are as in Table 2. Model 3b will have the same
parameter estimates as Model 2b and therefore is not listed.
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of written problems that students in this age group are required to com-
plete (and with a range of strategies which themselves may have vari-
able working memory demands).

We found that in general, verbalworkingmemorywasmore strong-
ly related than spatial working memory to math outcomes (Table 3),
being a unique predictor for the math fluency and applied problems
outcomes. Spatial working memory has been found to be more impor-
tant for math at younger (e.g., preschool) ages, and verbal working
memory to be more important for math performance at older ages
(De Smedt et al., 2009; Hitch et al., 1988; Rasmussen & Bisanz, 2005).
This may be related to the automatization of addition and subtraction
facts (where verbal memory was significantly predictive in the current
study). According to Ashcraft and Christy (1995), “small facts” (i.e. ad-
dends less than 5) are more likely to be mastered by grade 1 with mas-
tery of “large facts” continuing through grade 6. For math problem
solving, verbal working memory is key given the need to identify and
manipulate problem elements. Generally, as task complexity increases
(e.g. applied problems in current study) working memory is relevant
because students need to work with pictures/graphs, auditory input,
written input, and at times, irrelevant information that need to be inte-
grated or discarded, as necessary. This is consistent with results from
prior work (Friso-van den Bos et al., 2013; Fuchs, Geary, Compton,
Fuchs, Hamlett, et al., 2010a) emphasizing domain general factors for
the prediction of word problems more so than for computations. The
only area for which spatial working memory exerted a stronger
influence than verbal working memory was for story problems; for
that measure, verbal working memory did not predict unique variance
(p = .07). It is possible that the format of the questions on this task
required a mental number line, especially for change-type problems
(i.e., beginning with a value, and then moving up or down a line to ar-
rive at a result), which may have emphasized spatial working memory.
Another possible explanation is that for this particular task, the students
had access to the text, which may have reduced the verbal working
memory demands.

The current data adds to a growing literature that emphasizes lin-
guistic factors in relation to mathematics performance (Barnes et al.,
2014; Fuchs, Geary, Compton, Fuchs, Hamlett, et al., 2010b; Hecht
et al., 2001; LeFevre et al., 2010; Savage et al., 2007). In the current
study, phonological awarenesswas a unique predictor for the computa-
tions outcome, and also for both applied problems and story problems;
thus, it the results are consistent with the existing literature in
documenting a strong role for phonological awareness in math out-
comes. Language systems have been shown to support math calcula-
tions; for example, in written math calculation it is necessary to
identify the numbers involved (Bryant et al., 1990; Hecht et al., 2001).
Additionally, math facts are commonly taught by oral repetition
in order to memorize them, which can be considered learning the
oral phonological representations of the number words (Robinson,
Menchetti, & Torgesen, 2002). Further, the aforementioned authors



Table 7
Hierarchical regression statistics for story problems outcome model.

B SE t β p

Model 1
Ethnicity (African American) −1.7752 0.9638 −1.84 −0.1978 0.0672
Ethnicity (Hispanic) −2.0367 0.9933 −2.05 −0.2005 0.0419
Ethnicity (Caucasian) 0.3394 1.0059 0.34 0.0324 0.7363
Behavioral inattention 0.0830 0.0227 3.66 0.2151 0.0003
Spatial working memory 0.3636 0.1099 3.31 0.1905 0.0011
Verbal working memory 0.2060 0.0818 2.51 0.1535 0.0128
Phonological awareness 0.4464 0.0973 4.59 0.2954 b .0001

Model 2a
Ethnicity (African American) −1.6963 0.9552 −1.78 −0.1890 0.0776
Ethnicity (Hispanic) −1.7419 0.9896 −1.76 −0.1719 0.0802
Ethnicity (Caucasian) 0.4777 0.9947 0.48 0.0457 0.6317
Behavioral inattention 0.0697 0.0230 3.03 0.1813 0.0028
Spatial working memory 0.2728 0.1143 2.39 0.1434 0.0181
Verbal working memory 0.1828 0.0814 2.25 0.1368 0.0260
Phonological awareness 0.4090 0.0996 4.10 0.2718 b .0001
Procedural counting 0.3751 0.3521 1.07 0.0677 0.2882
Conceptual counting 0.6493 0.3646 1.78 0.1072 0.0768

Model 2b
Ethnicity (African American) −1.6965 0.9172 −1.85 −0.1884 0.0662
Ethnicity (Hispanic) −1.2485 0.9571 −1.30 −0.1231 0.1939
Ethnicity (Caucasian) 0.3810 0.9583 0.40 0.0365 0.6915
Behavioral inattention 0.0295 0.0244 1.21 0.0762 0.2286
Spatial working memory 0.2685 0.1102 2.44 0.1412 0.0159
Verbal working memory 0.1459 0.0785 1.86 0.1091 0.0649
Phonological awareness 0.3312 0.0984 3.37 0.2194 0.0009
Procedural counting −0.0344 0.3610 −0.10 −0.0062 0.9243
Conceptual counting 0.2120 0.3668 0.58 0.0350 0.5640
Symbolic number identification 0.2398 0.1087 2.21 0.1530 0.0286
Symbolic number comparison 0.0925 0.0256 3.57 0.2318 0.0005

Model 3a
Ethnicity (African American) −1.6199 0.9140 −1.77 −0.1799 0.0782
Ethnicity (Hispanic) −1.2537 0.9556 −1.31 −0.1234 0.1913
Ethnicity (Caucasian) 0.3946 0.9574 0.41 0.0377 0.6806
Behavioral inattention 0.0309 0.0244 1.27 0.0797 0.2069
Spatial working memory 0.2895 0.1061 2.73 0.1518 0.0070
Verbal working memory 0.1501 0.0784 1.91 0.1118 0.0574
Phonological awareness 0.3237 0.0970 3.34 0.2137 0.0010
Symbolic number identification 0.2612 0.1013 2.58 0.1666 0.0107
Symbolic number comparison 0.0926 0.0245 3.78 0.2314 0.0002

Model 3b (see Model 2b)

Model/model comparison R2/R2 Δ F p

R2 Model 1 0.5500 29.69 b .0001
R2 Δ Model 2a–1 0.0170 2.61 ns
R2 Δ Model 2b–2a 0.0417 5.88 b .0001
R2 Δ Model 3b–3a 0.0054 1.15 ns
R2 Full Model (2b/3b) 0.6087 23.19 b .0001

Note. B = parameter estimate; SE = standard error; t = t value; β = standardized
estimate; p = p value. Abbreviations are as in Table 2. Ethnicity t values are relative to
students coded Asian. Model 3b will have the same parameter estimates as Model 2b
and therefore is not listed.
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suggest that children with math difficulties struggle with tasks that in-
volve making connections between phonological representations of
numbers, rather than having a general memory deficit. That phonolog-
ical awarenesswas not a unique predictor for ourmath fluencymeasure
may be due to the fact thatfirst grade students have not yet fully autom-
atized math facts, as evidenced by relatively few problems correct on
these measures. However, it was still the case that phonological aware-
ness had similar zero order correlations with math fluency and compu-
tations. Thismay in part reflect that the processes utilized by students at
this age on these two tasks were more similar than different; thus the
math fluency measure may have only weakly assessed “math fact
retrieval” while the calculations measure only weakly assessed “proce-
dural computations.”

Surprisingly behavioral inattention was not uniquely predictive in
any of the abovemodels, though correlations showed that behavioral in-
attention was significantly related to each the outcomes (r = .35–.48),
see Table 3. A review of the inter-correlations between predictors
(Table 3) shows that behavioral inattention was significantly related
to the other variables (r = .33–.55), though not at a level to represent
multicolinearity.While this could help to explain the lack of significance
of behavioral inattention in the regression models, it is unlikely since
the strength of the correlations is similar to those of the other predictor
variables (r = .31–.63).

Another possibility is related to age as much of the literature that
supports the relation of behavioral inattention and math skills has
been with older children (Duncan et al., 2007; Fuchs et al., 2006;
Raghubar et al., 2009; Seethaler & Fuchs, 2005). In the age range of
this study (6 to 7 years old), the math problems on these measures
may be less susceptible to inattentive errors. For example, the problems
involve only one type of operation at a time rather than having to switch
among the four operations and do not require properly aligning num-
bers or decimal points to solve the problems. It is possible that relation-
ships would be stronger with outcomes requiring such switching (e.g.,
WJ-III Math Fluency); however, even studies with older children have
failed to find a relation of behavioral inattention and errors related to
switching or misalignment (Raghubar et al., 2009). The present study
also accounts for many relevant factors not always found in prior stud-
ies. For example, the meta-analysis by Duncan et al. (2007) included
early math and reading achievement, hyperactivity and social skills rat-
ings, and verbal measures, but did not include phonological awareness
or workingmemory. Further, research has demonstrated that measures
of teacher and parent ratings of behavioral inattention show significant
phentotypic overlap with child-based measures of working memory
(Gathercole et al., 2008; Liu & Tannock, 2007), and this may account
for the lack of significant findings with behavioral inattention when
working memory is also in the model.

5.2. Domain specific

Present results are consistentwith previous literature showing sym-
bolic number variables (Geary et al., 2009; Gersten & Chard, 1999;
Jordan et al., 2006, 2009; Locuniak & Jordan, 2008) to be significant pre-
dictors of complexmath outcomes. Counting variables showed variable
predictive power in models that considered demographics, domain
general, and counting variables. Conceptual counting was a unique pre-
dictor for fluency, computation, and math problem solving, whereas
procedural counting was a unique predictor only for applied problems.
However, when the symbolic number predictors were added, the
unique contribution of counting variables was eliminated. The reverse
was not true, demonstrating the robustness of the symbolic number
predictors for each of the mathematical outcomes. The results to some
extent differ from Praet et al. (2013), who found procedural counting
to be more predictive than conceptual counting within the context of
similar factors.

It is possible that the format of the problems impacted which num-
ber variables were consistently unique predictors in the final models,
more so than the counting factors. All of the math outcomes involved
Arabic written numerals rather than solely mental arithmetic. Where
items were read (such as story problems), students also had access to
the printed question, including the numbers. Therefore, to compute
the answer to the written problem 4 + 8, they must first identify the
numbers involved, and if the answer is not retrieved, then counting
would be required. To apply more advanced counting techniques
(such as max as opposed to counting all), students must also make a
judgment about the relative magnitudes of the numbers. In contrast,
the counting measures were either oral or did not utilize written num-
bers. This may have had the effect ofmaking the countingmeasures less
proximal to the outcome than intended. Therefore, even though
counting may be more proximal to the answer, the task also requires
the number skills of identification and symbolic number comparison.
Cirino (2011) found that both symbolic number and counting factors
were related to small sums written addition, although this was a
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concurrent outcome in kindergarten, and was the only mathematical
outcome available. However, Koponen et al. (2007) also found a specific
role for procedural counting for their fluency (single digit calculation)
outcome in grade 4, whereas conceptual counting was predictive of
more complex computation. That study did not include symbolic num-
ber predictors, but did include letter knowledge, which may overlap
with one of the number predictors used in this study, symbolic number
identification, in terms of the processes involved.

It is unknown whether aural tasks would yield differing outcomes,
which may be addressed in future studies. It is also possible that the
counting variables, as well as the specific counting types, may manifest
themselves differently at later time points, and so this remains an open
avenue of investigation. Finally, it may also be that the predictive vari-
ance for all of the symbolic number variables examined here are more
shared than unique. For example, Fuchs, Geary, Compton, Fuchs,
Hamlett, et al. (2010a) showed that while different domain general
and domain specific predictors were unique for computational versus
problem solving outcomes in grade 1, they also indicated that the larger
portion of the prediction was shared. At any rate, it is clear that the
symbolic number predictors involve multiple processes themselves,
including domain general ones, and so investigating mechanisms of
action for each will be an important direction.

Given their strength in prediction across the range of ability as
demonstrated here, the results of this study suggest that assessment
of Arabic numerals and number estimations would be useful in helping
to identify children who are likely to struggle with math skills. Indeed,
Rouselle and Noel (2007) found that children with math learning dis-
abilities were impaired on symbolic magnitude comparison as com-
pared to typically developing peers, while non-symbolic magnitude
comparison was intact. These authors posit that these findings suggest
the difficulty for children is not with processing numerosity in general,
but rather in accessibility of symbolic magnitudes. Though the counting
variables were not predictive in the context of the other domain specific
factors used in the current study, these have been shown in other stud-
ies to be relevant later in a child's education. As well, the counting var-
iables were still highly related to each of the math outcomes, and their
role is consistent with studies that emphasize counting strategies for
improving number combinations and generalizing to story problems
in both at-risk students in kindergarten (Dyson, Jordan, & Glutting,
2011) and in students with MD with or without comorbid RD (Fuchs
et al., 2009).

Curricula vary in the extent that they emphasize conceptual rela-
tionships such as discovery learning or visual representations, versus
those that emphasize number recognition, sequencing, and number
combinations. For students who struggle in academic areas, an explicit
and systematic focus on core skills that are most closely related to the
desired outcome (i.e., words in reading, Arabic numerals in math)
may be even more important (Gersten et al., 2009a; Gersten et al.,
2009b). The contributions of the domain general variables were found
to be relevant, though the direct versus indirect impact of these vari-
ables needs to be further assessed. Such skills (or behaviors) can still
exert influence on children's classroom performance, particularly as
math skills become more differentiated and involve more problem
solving or extended algorithmic procedures. Therefore, assessment of
these factors (workingmemory, phonological awareness, and behavior-
al inattention) can still be beneficial in guiding interventions by identi-
fying skills that may compound or otherwise interfere with the more
direct elements of the intervention.

The current results should be interpreted in the context of its limita-
tions. The focus of this studywas on identifying predictors to a variety of
math outcomes across the ability level, and so explicit identification and
classification of children as having a difficulty or disability in math was
beyond the scope of the present study. As mentioned in the Introduc-
tion, there is no consensus of the best way to identify children with
MD. Further, using cut off scores will arbitrarily demarcate a continuous
distribution and there is a lack of evidence that differential prediction
is possible along a continuum. There would also be the concern of re-
striction of range as it is likely there would be few children at the ex-
tremes of the distribution. Nonetheless, identification of risk status is
an important goal, particularly from a practical perspective, and is an
area that needs further study. Another limitation is with regard to the
role of ethnicity for the story problems outcome. Although thiswas con-
sidered with regard to other covariates such as second language status
and lunch assistance at school, measurement of more finely tuned so-
cioeconomic variables, or home language environment, specifically re-
garding numeracy exposure, may better have elucidated these
interrelationships. Lastly, there is a limitation with regard to the assess-
ment of the relationship between attention and math outcomes. While
no relation was found here, it is possible that a measure of cognitive at-
tention (e.g. measuring selective, sustained, or divided attention types)
would have contributed to themath outcomes in the current study. Fur-
ther studies should include both cognitive and behavioral ratings of at-
tention to clarify its relationship to these math outcomes.

In sum, this study found that: (1)while both procedural and concep-
tual counting are both strongly related to several types of math out-
comes, patterns of counting do not convincingly distinguish between
different math outcomes; (2) symbolic number factors account for
much of the variance in math outcomes over and above counting fac-
tors; and (3) each outcome had distinct predictors, with more compre-
hensive outcomes (math problem solving) having a wider range of
predictors. To the extent that predictor–outcome relationships are
similar across the range of ability, these results therefore highlight the
importance of linguistic variables, including both the symbolic and
counting skills, in helping to identify children who are more likely to
struggle with mathematics skills. Further this relationship between
the symbolic number tasks and the counting skills appears to be bidirec-
tional rather than a unidirectional causation suggesting the importance
for both skills to be well developed for success with mathematics.
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